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Abstract. We describe the problem of scheduling astronomy observations for
the Stratospheric Observatory for Infrared Astronomy, an airborne telescope. The
problem requires maximizing the number of requested observations scheduled
subject to a mixture of discrete and continuous constraints relating the feasibility
of an astronomical observation to the position and time at which the observation
begins, telescope elevation limits, Special Use Airspace limitations, and avail-
able fuel. Solving the problem requires making discrete choices (e.g. selection
and sequencing of observations) and continuous ones (e.g. takeoff time and setup
actions for observations by repositioning the aircraft). Previously, we developed
an algorithm called ForwardPlanner using a combination of AI and OR tech-
niques including progression planning, lookahead heuristics, stochastic sampling
and numerical optimization, to solve a simplified version of this problem. In this
paper, we show that ForwardPlanner fails to scale when accounting for all rele-
vant constraints. We describe a novel combination of Squeaky Wheel Optimiza-
tion (SWO), an incomplete algorithm designed to solve scheduling problems,
with previously devised numerical optimization methods and stochastic sampling
approaches, as well as heuristics based on reformulations of the SFPP to tradi-
tional OR scheduling problems. We show that this new algorithm finds as good
or better flight plans as the previous approaches, often with less computation time.

1 Introduction

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA’s next gener-
ation airborne astronomical observatory. The facility consists of a 747-SP modified to
accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science
flights per year over its 20 year lifetime, and will commence operations in early 2005.
The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is
articulated through a range of20◦ to 60◦ of elevation. The telescope has minimal lateral
flexibility; thus, the aircraft must turn constantly to maintain the telescope’s focus on an
object during observations. A significant problem in future SOFIA operations is that of
scheduling Facility Instrument (FI) flights in support of the SOFIA General Investiga-
tor (GI) program, called the SFPP (Single Flight Planning Problem). GIs are expected
to propose small numbers of observations, and many observations must be grouped to-
gether to make up single flights. Approximately 70 GI flight per year are expected, with
5-15 observations per flight.
? QSS Group, Inc.
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Flight planning for the previous generation airborne observatory, the Kuiper Air-
borne Observatory (KAO), was done by hand; planners had to choose takeoff time,
observations to perform, and decide on setup-actions called “dead-legs” to reposition
the aircraft. This task frequently required between 6-8 hours to plan one flight1. The
scope of the flight planning problem for supporting GI observations with the antici-
pated flight rate for SOFIA makes the manual approach for flight planning daunting.
There has been considerable success in automating observation scheduling for ground-
based telescopes [1], space-based telescopes such as Hubble Space Telescope [2], Earth
Observing Satellites [3] and planetary rovers [4]. However, the SOFIA flight planning
problem differs from these problems in a variety of ways. Observations are feasible
over large, continuous regions of space and time; observations that can’t be done at the
current position and time may have an infinite number of setup actions enabling them.
The principal feasibility condition for observations is goverened by a nonlinear func-
tion over the solution to the equations of motion, complicating the task of finding good
heuristics. Temporal constraints are implicit in these continuous constraints; bounding
above approximations are hard to calculate and generally weak, making temporal con-
straint propagation unlikely. Finally, the expense of solving the differential equations
impacts the speed of automated planning.

Previously, we developed the first algorithm to solve a simplified version of the
SFPP, called ForwardPlanner [5, 6]. ForwardPlanner is a novel combination of AI and
OR techniques, including progression planning, lookahead heuristics, biased stochas-
tic sampling, approximations and continuous optimization methods. Initial results with
ForwardPlanner on a simplified version of the SFPP were promising; however, we show
in this paper that ForwardPlanner fails to scale as more and more constraints (Special
Use Airspace (SUAs), runway and airway selection, high-fidelity fuel consumption on
takeoff and landing, in-flight altitude changes, calculation of initial fuel load) on valid
flight plans were added to the problem description. Computationally expensive looka-
head search is needed to obtain good results from ForwardPlanner. Introducing approxi-
mations significantly reduces the costs of lookahead, but ultimately leads to poor quality
flight plans. Consequently, we seek a new approach to solving the problem.

Squeaky Wheel Optimization (SWO) [7] was originally developed for schedul-
ing problems with an optimization objective. SWO employs a permutation of tasks to
schedule, and a fast procedure called aConstructorthat treats each task in order, ulti-
mately scheduling tasks or rejecting them. The permutation and its resulting schedule
are then analyzed by aCritic to determine a new permutation that might schedule tasks
that were previously rejected. The cycle repeats until all tasks are scheduled or for a
fixed number of iterations. SWO was originally evaluated on Graph Coloring [7], and
has since been employed for satellite observation scheduling [8] and range scheduling
[9], as well as project scheduling with temporal constraints [10]. The promise of SWO
for solving the SFPP is that good plans can be found using fewer expensive feasibility
checks than ForwardPlanner.

The rest of the paper is organized as follows. We first formally describe the SFPP,
the constraints on flight plans, and the optimization criteria used to compare valid flight
plans. We then briefly describe the ForwardPlanner and discuss its problems. We then
introduce Squeaky Wheel Optimization (SWO) and discuss how to apply it to the SFPP
using numerical optimization methods and approximate solutions to OR problems. We
show that SWO improves upon ForwardPlanner on a small set of examples. We then
discuss a variety of ways to improve the performance of SWO. We describe experiments
to validate the approach. Finally, we conclude and discuss future work.

2 SOFIA’s Choice

The input to the Single Flight Planning Problem (SFPP) consists of a set of observation
requests, each consisting of the Right Ascension (RA)α and Declination (Dec)δ, ob-

1 Anecdotal evidence provided from conversations with SOFIA staff who worked with KAO.
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servation duration, priority; a flight date; maximum fuel load; an altitude profile; earliest
takeoff timeθl and latest landing timesθu; the designated takeoff and landing airports
(which need not be the same); predicted wind and temperature; and a list of SUAs. For
a flight plan to be valid, the aircraft must take off from the takeoff airport, land at the
landing airport, avoid all SUAs, and consume less than the available fuel at takeoff. The
objective is to find a flight plan that maximizes the number of requested observations
performed. During flight,Flight-legsrequire tracking an object for a period of time, and
are only valid if the object stays within the telescope elevation limits for the requested
duration. The observation must also take place in darkness (the sun must be below the
horizon).Dead-legs, when no observations are performed, can be used to reposition the
aircraft to enable flight-legs. A distinguished class of dead-legs are used to take off and
return to the landing airport. Since it is intractable to find the best possible plan, we limit
ourselves to searching forgoodplans that perform many observations of high priority.
Solving the SFPP requires choosing a takeoff time, selecting the set of observations to
service, ordering them and inserting necessary dead-legs to ensure that all flight legs
are valid.

2.1 Constraints on Valid Flights

In this section we describe the constraints on valid solutions to the SFPP in more detail.
The telescope is carried aboard a Boeing 747-SP aircraft. The fuel consumption of each
engine depends on the aircraft weight, mach number, outside air temperature, initial
altitude and final altitude. The fuel consumption constraints are represented in a lookup
table provided by Boeing. The aircraft follows a pre-determinedaltitude profilethat
describes the maximum permitted altitude at an absolute time after takeoff. Climbs are
allowed periodically to decrease fuel consumption. At the end of a leg, if the aircraft is
allowed to climb, it climbs to the maximum altitude permitted by the fuel performance
table or the altitude profile. The profiles used in this paper were developed assuming
standard atmosphere [11]; actual atmospheric conditions and aircraft weight may force
the aircraft to fly lower than the altitude profile permits. Predicted wind and temperature
are used to calculate the ground track and fuel consumption. Finally, SUAs constrain
the ground track of the aircraft by forcing dead-legs to reposition the aircraft. Space
precludes describing the fuel consumption constraint in more detail.
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Fig. 1. The Cartesian formulation of the
instantaneous equations of motion of the
aircraft and the elevation.

The constraints linking aircraft motion
and observation feasibility are the most
complex and important component of the
problem, so we describe them in detail
here. SOFIA can view objects between
20◦ and60◦ of elevation (from the plane of
flight). If an observation is scheduled, then
it must be performed for the requested du-
ration without interruption, and the ob-
ject must stay within the elevation limits
throughout the observation. The elevation
of an object depends on the object’s co-
ordinates, the aircraft’s position and the
time.

Checking this constraint requires computing the aircraft’s ground track throughout
the course of the observation. Figure 1 shows the interaction between the object’s coor-
dinates, the aircraft’s position, the time, and the telescope elevation. The Earth is mod-
eled as an oblate spheroidE, whose surface is defined by the equationx2

a2 + y2

a2 + z2

c2 = 1
wherec < a. Let p be the aircraft’s current position, (latitudeγ and longitudeL) and
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θ be the (Sidereal) time that the aircraft is atp. Let S be the vector from the center of
E to p. Let T be the vector to an astronomical objecto at timeθ, andP as the plane
tangent toE atp. Let î, ĵ, k̂ be the unit vectors in thex, y, z directions respectively. Let
N be the vector normal toP: N = px

a2 î+
py

a2 ĵ+ pz

c2 k̂ (Note thatS andN are generally
not parallel sinceE is a spheroid.) LetTP be the projection ofT ontoP; this is the
object azimuthatp, and is given byTP = T − T N

||N ||2 N . LetV be the desired heading
of the aircraft. The observatory must track the object inducingT , subject to the con-
straint that the angle betweenV andTP is 270◦, because the telescope points out the
left-hand side of the aircraft. LetRN (270◦) be a rotation matrix that rotates a vector
270◦ aroundN , andv be the airspeed of the aircraft; thenV = vRN (270◦) TP

||TP || . Let
H be the elevation vector with respect toP. We also require the angleh betweenH
andTP obey the constraint20◦ ≤ h ≤ 60◦ throughout an observation. Most targets are
sufficiently far from Earth that we can assumeH = T + S. From vector calculus we

then get the equation for the elevationh = cos−1
(

HTP

||H|| ||TP ||

)
. The angler between

Vd and the object azimuth at the new positionTP is given by:r = cos−1
(

VdTP

||Vd|| ||TP ||

)
.

Now, T is a function ofo andθ; this is because the Earth rotates on its axis. The vector
T traces a circle of radiusx2 + y2 = c2−d

c2 , whered = | δ
90◦ | in 24 hours (see [12] for

an explanation of this).
The instantaneous change inp as the aircraft trackso is dp

dθ = V . SinceV is a func-
tion ofT , it is a function ofo,p andθ. Solving for the ground track is necessary to com-
puteh over the entire duration of the observation and check the elevation constraints.
It is worth noting that this formulation also makes it easy to add the effect of winds by
adding the appropriate vectors toV , and also correct for aircraft pitch by rotating about
V ×N , but we omit these for brevity. The ground track and elevation constraints are
solved using a specialized5th-order Runge-Kutta [13] with error-adaptive step sizing.

3 ForwardPlanner and its Discontents

The first fully automated approach to solving the SFPP was ForwardPlanner [5,?].
We originally assumed no SUAs and ignored runway and airway selection, ascent and
descent, thus simplifying the fuel consumption constraint. ForwardPlanner combines
progression based search, continuous numerical optimization, dispatch heuristics and
stochastic sampling, resulting in an incomplete randomized algorithm. ForwardPlanner
evaluates observations at each phase of a flight, and selected one observation to add
to the flight. Suppose the aircraft is at positionα, L at timeθ after performing some
observations. Rather than considering all possible setup actions, ForwardPlanner only
considers theshortest dead-legmaking an observation visible for long enough and al-
lowing the aircraft to subsequently fly to the landing airport. If the shortest dead-leg
crosses an SUA, the heading is shifted minimally left or right from the heading of the
shortest dead leg until the dead leg misses all SUAs. The duration of the leg is then ad-
justed to ensure the object is visible for the required duration. If the resulting dead leg is
longer thanD (an operational limitation on the longest permissible dead-leg), then the
observation is rejected. If the flight-leg following this dead-leg crosses any SUA, the ob-
servation is rejected. If the observation begins before sunset or ends after sunriseat the
local position, the observation is rejected. (Remember, changing your position changes
the time at which the sun rises or sets.) Finally, if the aircraft cannot return to the landing
airport after the observation is performed, the observation is rejected. If the observation
survives all of these checks, ForwardPlanner considers it is feasible. Each feasible ob-
servation is then evaluated by first adding it to the flight plan, then heuristically adding
a fixed number of additional observations. This ”lookahead” is performed to estimate
the best flight plan possible after adding each observation. These short extensions are
evaluated using a weighted sum of thepriority of the observations performed so far, the
efficiency(ratio of time spent observing to total flight time) of the (incomplete) flight,
the estimated time to return to the designated landing airport, and the total time spent
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in turns. The heuristic rank of each observation is treated as the mass of a probability
distribution used to select the next observation. Thus, if we have a set of choicesC and
heuristic values of of these choicesv(c), we choose an elementc ∈ C with probability

v(c)∑
d∈C

v(d)
. This technique is similar to Heuristic Biased Stochastic Sampling (HBSS),

a technique used for scheduling ground based telescopes [1]. This means that the ”best”
candidate need not be selected at any stage of the process, but has the highest proba-
bility of being selected next. The process of evaluating the feasible observations and
adding the next observation to a flight is shown pictorally in Figure 2. ForwardPlanner
is a stochastic algorithm, and can be run several times to generate better flights; the
ForwardPlanner algorithm sketch is shown in Figure 3.

2. Feasible Observations

W51

W31Orion

M74

Elvis

W31
0.5

Elvis
0.4

Orion
0.6

Elvis
0.2

Orion
0.7

1. Current Plan

3. Lookahead

P(Elvis)
=0.2/0.9

P(Orion)
0.7/0.9

4. Stochastic Choice

SgrA
0.6

5. Value Observation
based on extension

Fig. 2. ForwardPlanner’s Evaluate() routine.
Each feasible observation in the current plan
1) is added to the plan 2). A fixed number of
observations are used to extend the plan 3).
Each of these observations is evaluated in-
dividually, and the values are used to form
a probability distribution; this distribution is
sampled 4) to determine how to extend the
flight. Once the maximum number of obser-
vations in lookahead (2 in this example) is
reached, the resulting flight is used to deter-
mine how good it is to add the first observa-
tion to the current flight 5).

ForwardPlanner()
# F is (initially empty) current flight plan
for MaxRepeats

Select takeoff time
while not done

# E is set of feasible observations
for each unscheduled observationo

if Feasible(o, p, θ)
Add p to F ; updatep, θ
v=Evaluate(o, F )
Add (o, v) to E
Removeo from F

endfor
if E is not empty

Use valuesv to selecte from E
ExtendF by e; emptyE

else done
endfor

return F
end

Fig. 3.A sketch of the ForwardPlanner Algo-
rithm. At each step, all feasible observations
are considered as the next observation in the
plan. For each feasible observation, the Eval-
uate() routine builds an extension of the plan
to evaluate how good a flight will result. Fea-
sible() is described in Figure 7.

The principal cost of ForwardPlanner is in the lookahead phase, where many legs
are constructed to test observation feasibility solely to evaluate an observation, and then
are thrown away. LetN be the number of observation requests, letK be the lookahead
depth, and letM be the maximum number of observations that can be in any flight plan.
Each ofMaxRepeatsloops in ForwardPlanner makesO(N2KM) calls to Feasible();
a proof of this appears in [5]. It was found empirically thatK = 4 struck a good bal-
ance between computational cost and flight plan quality [5]. The basic algorithm was
improved upon in [6] by observing that many expensive dead-leg construction steps in
ForwardPlanner could be eliminated by formulating the problem of finding dead-legs
to prove feasibility as a zero-finding problem. Suppose an observation is not visible at
the current position and time. If we drop the condition on reaching the landing airport,
an approximation of the shortest dead legb, d (b is the heading andd is the duration)
has the property thatF1(b, d) =< f1(b, d), f2(b, d) >=< 0, 0 > wheref1 is the dif-
ference between the object azimuth and the final heading of the aircraft after flying the
dead-leg defined byb, d, andf2 is the difference between the object elevation after fly-
ing the dead-leg and the telescope elevation limit closest to the initial object elevation.
A similar formulation exists for the shortest dead leg ensuring an observation is visible
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throughout a flight leg [6]. We solve forb, d using a Secant Method2; the final version
of Feasible() used in FowrardPlanner appears in Figure 7. The resulting algorithm is a
novel combination of AI progression planning and stochastic sampling and OR numer-
ical optimization techniques for solving a complex constrained optimization problem.
This approach reduces the runtime of ForwardPlanner without impacting the value of
the flight plans found.

Initial results on solving the simplified version of SFPP with ForwardPlanner were
promising [6]. However, adding requirements to avoid SUAs, calculate initial fuel loads
in the face of predicted weather, runway and airway selection, and calculating fuel
consumption based on altitude changes (especially complex for takeoff and landing).
made ForwardPlanner too slow. In particular, SUA evasion and fuel consumption dur-
ing climb vastly increase the expense of the feasibility check. This is problematic, given
that large lookahead and many samples are needed to find good quality plans. Further
reductions in runtime can be accomplished by approximately calculating aircraft po-
sition after flight legs in the lookahead phase using Euler’s Method instead of Runge
Kutta. Euler’s Method approximates the solution to the ground track by flying a constant
heading for a fixed (small) duration relative to the total observation time. The approx-
imation we used does not adequately account for the ellipsoid Earth, wind speed and
direction, change of altitude, and estimates fuel consumption based on the last calcu-
lated fuel consumption rate. Our intuition was that these approximations would permit
a good, fast estimate of the value of inserting an observation. Unfortunately, the heuris-
tic quality degrades too much and leads to poor quality plans. Figures 4 and 5 compare
performance on 6 sample problems (we will discuss the SWO results later in the paper).
In these experiments, ForwardPlanner was run with MaxRepeats= 20. ForwardPlan-
ner without the Euler’s Method approximation performs well but takes 8-20 minutes
per flight generated. We see that Euler’s Method reduces ForwardPlanner’s computa-
tion time considerably, but leads to plans with fewer scheduled observations in 4 of 6
cases. While some of the cost savings is in lookups to outside air temperature and the
fuel table, as well as the switch in integration methods, the vast increase in software
complexity required to correct these problems led us to search for new solutions to the
problem that allow us to generate good quality flights fast.
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Fig. 4. Comparison of solution quality for
ForwardPlanner (with and without Euler’s
method approximation of flight dynamics)
and SWO.
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Fig. 5. Comparison of average CPU time for
ForwardPlanner (with and without Euler’s
method approximation of flight dynamics)
and SWO.

2 The previous work incorrectly identified the method used as Newton’s Method; since numeri-
cal derivatives are used, we actually use a Secant Method, which is the term we will use in this
paper.
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4 Squeaky Wheel Optimization for the SFPP

SWO employs a permutation of tasks to schedule, and a fast procedure called aCon-
structorthat treats each task in order, ultimately scheduling tasks or rejecting them. The
permutation and its resulting schedule are then analyzed by aCritic to determine a new
permutation that might schedule tasks that were previously rejected. The cycle repeats
until all tasks are scheduled or for a fixed number of iterations. Figures 6 and 7 describe
a family of SWO algorithms specialized for solving the SFPP. We discuss the features
of this specialized SWO in more detail below.

The constructor assumes that the flight begins at the takeoff time, and that the per-
mutationP imposes a precedence ordering on the observations, and attempts to con-
struct a schedule. If an observation is not trivially visible for the requested duration, the
shortest dead-leg is constructed by solving the zero finding problem. If this leg is short
enough, SUAs can be avoided, and sufficient fuel remains the observation is added, oth-
erwise it is rejected; this is identical to the procedure used in ForwardPlanner, and is
shown in Figure 7. Rejecting theith observation inP does not imply rejection ofj > i,
so all observations are processed. The best flightB is the flight maximizings

2 + e
2 ,

wheres is the percentage of requested observations scheduled, ande is the efficiency
of the flight (the ratio of time spent observing to flight time)3. The final flight plan is
checked for SUA violations on the return leg; if there are any, the flight is rejected.

SWO(MaxFlights,MaxRepeats)
# F is current flight plan
# B is best flight plan
# P is a permutation of observations
# R is rejected observations
for MaxRepeats

1. Generate permutationP
for MaxFlights

2. Select the takeoff timeθ
# Construct flight fromP
# p is the current position ofF
for observationo ∈ P

if Feasible(o, p, θ)
Add p to F ; updatep, θ

elseaddp to R
end for
Update best flight planB
if R = ∅ returnF
else

3. ModifyP by analyzingF andR
end for

end for
if dead leg home does not violate SUA

return B

Fig. 6. A sketch of the family of SWO-based
Flight Planning Algorithm. Later sections
elaborate on options for1. Generate permuta-
tions, 2. Select the takeoff time, and 3. Modify
P by analyzingF andR.

Feasible(o, p, θ)
# o is the observation
# p is the current position
# D is maximum dead leg duration
(b, d, z) = FindDeadLeg(o, p, θ)
# b = heading,d = duration,z = SUA zone
if the dead-leg crosses any SUA zonez

#Revise dead legs to avoid SUA
b′ is closest heading s.t. allz not crossed
d′ is new duration
d = d′; b = b′

if d > D return false
if observation starts and ends in darkness

if dead leg home possible followingo
return true

return false

FindDeadLeg(o, p, θ)
#e is the elevation limito violates atp, θ
Guess dead-legb, d; calculater, h after dead-leg
#f1(b, d) = r, f2(b, d) = e− h
while 〈f1, f2〉 6= 〈0, 0〉

J =

(
∂f1
∂b

(b, d) ∂f1
∂d

(b, d)
∂f2
∂b

(b, d) ∂f2
∂d

(b, d)

)
≡

(
p q
r s

)
|J | = ps− qr
if |J | < t then |J | = t (preserve the sign of|J |)
db = qf2−sf1

|J| anddd = pf1−rf2
|J|

b = b + db, d = d + dd
Updater,h

Fig. 7. The feasibility test with the Secant
Method for finding dead legs.t, db, dd are
tuning parameters. Derivatives are all calcu-
lated numerically.r andh are calculated as
discussed in Section 2.1.

3 Efficiency is a secondary criteria for good quality flights.
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In order to modify the permutationP , a critic must both select a rejected observa-
tion r in R and decide where inP we would like to putr. We want to use the flight
plan F built with permutationP to decide how to modifyP . Each observation in a
flight plan defines a ”slot” in which a new observation could be placed. Unlike SWO
approaches taken in [9] and [8], we do not perform ”blind” migration of jobs in the
permutation. Rather, we identify where in the permutation we can move rejected ob-
servations to ensure that the resulting schedule is modified. Since we guarantee that a
rejected observation will be scheduled during the next construction phase, we run the
risk that some later observations in the flight might be displaced. Thus, it is important
to estimate how much we ”regret” moving an observation to a particular place. Crit-
ics must both be fast and produce good quality flights by moving rejected observations
without displacing many scheduled observations.

SWO attempts to modify the permutationP by reordering the rejected observations
to produce a new flight in which these observations are scheduled, possibly leading
to the rejection of other observations. At worst, this might requireO(N2) feasibil-
ity checks to determine which slots rejected observations can occupy. While each of
MaxRepeatscalls in ForwardPlanner makesO(N2KM) flight leg feasibility checks,
each such call in SWO makesO(MaxFlights(N + N2)) feasibility checks. As long
asMaxFlights< KM , SWO costs less per invocation than ForwardPlanner; this seems
likely sinceMaxFlights, M andK likely scale withN . This makes SWO a good can-
didate for improving upon ForwardPlanner.

There is a complex interplay between the permutation modification and takeoff time
selection. First, it is possible to construct very bad flight plans by poor selection of the
takeoff time. Second, the combination of the takeoff time, permutation and the fast
scheduler implicitly schedules a subset of the observations. Finally, the fact that per-
mutations are constantly modified allows reconsideration of the takeoff time based on
the new permutation. For these reasons, this version of SWO ensures that new takeoff
times can be chosen after each modification of the permutation.

4.1 Useful Concepts

In preparation for building our SWO, we introduce some useful concepts.
Time windows during which an objecto at Right Ascensionα and declinationδ is

visible at a fixed position can be constructed as follows. If the aircraft is at latitudeγ
longitudeL, the earliest and latest timesθr(o), θs(o) at which the observation is visible

by SOFIA are given byθr,s(o) = cos−1
(

sin(20)−(sin δ)(sin γ)
(cos δ)(cos γ)

)
+L+α [12]. Thesin(20)

term arises from the fact that SOFIA’s lower elevation limit is20◦. Note thatcos−1(x)
has 2 solutions, which provide the earliest rise timeθr(o) and latest set timeθs(o) of
the object at this position. The time of sunset and sunrise at this position can be used to
further tighten this window. There can be at most 2 feasible windows since all objects
period is 24 (sidereal) hours and the aircraft stays aloft less than 10 hours. For example,
an object can rise above the maximum elevation limit, then drop back into view. In our
critics, by default we use thefirst feasible window. We will also use the time at which
an object reaches its maximum elevation (above the local horizon), called thetransit
time. This is simplyθs(o)+θr(o)

2 .
The SFPP can be relaxed by approximating time windows for observations as de-

scribed in the previous paragraph, effectively pretending that the observatory is fixed
at some location. This leaves a problem in which observations have release times (ear-
liest rise times), due dates (latest set times), occupy a unary resource (the telescope).
This approximation is not bounding, because objects may rise earlier and set later at
different positions than the one used to calculate the time windows. Since SOFIA has a
maximum and maximum telescope elevation limit, the true feasibility windows of ob-
jects may not be convex. Additionally, objects could set then rise during the night, but
usually objects are observed at times of year when they are visible all night (and thus
achieve their maximum elevation sometime during the night). The resulting problem
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is 1|ri; pi; di|
∑

wiUi according to Graham’s hierarchy, a well-studied problem in AI
and OR which Karp provedNP-complete [14]. We use approximate solutions of this
problem in our takeoff-time selection method.

4.2 Generating Initial Permutations

We considered the following ways of generating the initial permutation:
Random selectionUniform : If there areN observations, one of theN ! permutations

is chosen uniformly at random.
Sort by Earliest Start TimeRise at the takeoff airport: We calculateθr(o) as de-

scribed in the previous section. The intuition behind this ordering is that flights often
occupy the whole night, so beginning observations as early as possible is a good initial
guess. Furthermore, this allows the largest time window to observe any object.

Sort by Latest Start TimeSetat the takeoff airport: We calculateθs(o) as described
in the previous section. Observing an object as late as possible may be a cheap method
of ensuring enough time remains to schedule necessary dead-legs.

Sort by Transit TimeTransit at the (landing) airport: The intuition here is that this
allows observing very nearby the airport; while one object is being observed, the next
object moves closer to the landing airport, allowing the aircraft to ”loiter” nearby.

4.3 Generating Takeoff Time

As we previously observed, due to the complex nature of the visibility constraints,
choosing a good takeoff time is important to constructing good flight plans. We there-
fore break down the takeoff time generation process into 2 phases: determining arange
of takeoff times, andsamplingfrom the range. We considered several takeoff time meth-
ods:

Estimated flight durationFlightDur : If we simply assume that the aircraft will stay
aloft as long as possible, we can estimate the flight durationf from the initial fuel
load and flight profile. The takeoff time range is[θl, θu − f ]. Since this quantity is
independent of the permutation, it needs be calculated only once. However, especially in
the summertime for long flights,f will exceed the duration of the night. This approach
will overestimate the number of observations that can actually be performed, and reduce
the takeoff time range to one time (roughly half an hour before sunset).

Minimum of Earliest Start TimesMin Rise: We can calculate the minimum over all
θr(o) at the takeoff airport, and ”pad” this by the amount of time needed to climb to
operational altitude. Since this quantity is independent of the permutation, it needs be
calculated only once. Only one takeoff time is generated by this approach.

OptimizeFirst-Observation in Permutation: It is clear thatθr(o) can be a bounding
above approximation to the earliest time when an observation can be performed; to see
why, observe that flying towards the observation makes it possible to observe it earlier.
Another approach is to assume that the first observation in a permutation is meant to be
observed, and to calculate the earliest time at which this observation can be performed.
Binary search over takeoff times is performed to find the takeoff time leading to the
earliest feasible observation time for the first observation. Only one feasible takeoff time
is generated by this approach. As the first observation in the permutation can change,
the takeoff time will need to be recalculated.

Approximate solution to the relaxed scheduling problemFeas-Sched: We use the
θr(o) andθs(o) calculated at the takeoff airport to approximate the time windows for the
observations and induce the relaxed scheduling problem1|ri; pi; di|

∑
wiUi. Since all

we are interested in is a range of takeoff times, we consider only fast approximation al-
gorithms. A feasible solution to the relaxed scheduling problem can be generated using
the permutation as an ordering heuristic, and either greedily scheduling from the begin-
ning or the end of the permutation. It is trivial to see that different feasible schedules,
and different takeoff time ranges, can be generated by scheduling forwards or back-
wards; this leads to two methods,Feas-Sched (Fwd)andFeas-Sched (Bkwd). Once
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a feasible solution is generated, we calculate the slack of the first feasible observation,
again ”padding” for the time to climb to altitude.

If a range of takeoff times is generated, we select from them uniformly at random.

4.4 Modifying the Permutation with Critics

In what follows, assume the problem instance containsN observation requests. All of
our critics use the biased sampling approach described earlier to make selections. Recall
that if we have a set of choicesC and values of of these choicesv(c) ∈ C, we choose
an elementc ∈ C with probability v(c)∑

d∈C
v(d)

.

We explored the following five critics to modify the permutation:
1-Phase: We first determine for each rejected observationo whether it is feasible in

each slots. This test uses the feasibility test in Figure 7 assuming the aircraft begins at
the position and time at the beginning of slots. For each feasible pair(o, s) we examine
the time at which the new observationo ends. Since the new observation is guaranteed
to be feasible, successive observations will be delayed, both due to the duration of the
new observation and its dead leg (if any). We then evaluate the rate of change of the
elevation of each successive observation to find out if it would still be visible at the same
position at the later time. This is obviously an approximation, since the aircraft position
would change after the newly inserted observation. Furthermore, it doesn’t consider the
possibility that unscheduled observations in the permutation could be added, so it is a
conservative regret estimate. LetX be the set of observations we estimate are made
infeasible byo. We then calculatev(o, s) for the sampling probabilities as follows. Ifs
is the first or last slot or one for whichX = ∅, thenv(o, s) = N . Otherwise,v(o, s) =(∑

x∈X u(x)
)−1

, whereu(x) = 0.5 if x had a dead-leg before it, andu(x) = 1 if
not. This penalizes choices that incur more regret, with the assumption that replaced
observations with dead-legs provide more flexibility for other observations to be added
later.

Obs-Slot: We first determine for each rejected observationo whether it is feasible
in each slots. We then randomly choose a feasible observationo from those that could
go into some slots. We calculate sampling probabilities as follows: if an observation
is visible ins slots, the heuristic isv(o) = N + 1 − s. (Observations visible nowhere
are not chosen.) We then calculatev(o, s) as described above for thoses in which o is
feasible, and randomly choose the slot foro.

Slot-Obs: We first determine for each rejected observationo whether it is feasible
in each slots. We then randomly choose a slot in which at least one rejected observation
is feasible. We calculate sampling probabilities as follows: ifv observations are visible
in a slot, and the problem instance containsN observations the heuristic isv(s) =
N + 1 − v. We then calculatev(o, s) as described above for thoseo feasible ins, and
choose randomly the observation to move tos.

Timet: For this critic, we useθs(o) andθr(o) at the takeoff airport, which can be
calculated once and needs never be repeated. The critic first chooses a feasible obser-
vationo. We calculate sampling probabilities as follows:v(o) = 1

θs(o)−θr(o) . We then
determine which slotss are feasible foro, and calculatev(o, s) as described above.
Finally, we randomly choose the observation to move tos usingv(o, s).

Timef : Calculatingθr(o), θs(o) at the takeoff airport is clearly inaccurate. We can
instead calculateθs(o) andθr(o) at each slot in the current flight, but at a higher com-
putational cost. We calculate sampling probabilities as follows: ifS is the set of slots
in the flight,v(o) = mins∈S

1
(θs(o)−θr(o))s

. We then chooseo according tov(o). We

then determine which slotss are feasible foro, and calculatev(o, s) as described above.
Finally, we randomly choose the observation to move tos usingv(o, s).

As a final wrinkle, we can modify the permutation by movingk rejected objects
rather than just one. The idea here is that multiple rejected observations could be re-
orderedindependentlyand potentially improve the flight plan using fewer construction
steps. This idea was successfully employed by [8] and [9] to speed up SWO.
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5 Identifying the Right SWO Features

Our approach to finding the best SWO features is to begin with a baseline algorithm:
Flight-Duration based takeoff time range selection,Uniform random initial permu-
tation, and theTimet critic. We will use the Wilcoxon Signed Ranked Test [15] to
determine whether using one feature is superior (finds better quality flights) to the base-
line SWO; we will select a small subset of promising algorithms to generate the next
algorithm. In the presentation of the Wilcoxon test results,X indicates the tests leading
to different values, positivez indicates an algorithm variant is likely to perform better
than the baseline, while a negativez indicates an algorithm variant is likely to perform
worse than baseline. Criticality measurements are typically given in ranges; criticalities
of > 0.05 are not considered statistically significant.

6 Empirical Results

In this section we present empirical results for varying facets of SWO in order to find
the best overall algorithm for solving the SFPP.

6.1 Sample Problems

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Airport H H H H M M M M M M M M M M M M
Date 8/6 8/8 8/10 8/12 1/9 1/10 1/16 6/16 6/18 6/19 6/30 7/6 8/12 8/16 4/4 4/5
# Obs 9 9 10 10 7 8 8 6 10 8 8 6 11 10 9 9
Index 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Airport M M M M M M M M M M M M M M M M M
Date 4/6 4/11 4/12 4/14 4/19 5/4 5/8 7/1 7/6 8/2 8/22 8/24 8/26 8/29 9/1 9/19
# Obs 10 8 8 8 10 10 6 7 4 6 9 8 11 10 8 7
Index 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Airport M M M M M M M MH MH MH N N N N N
Date 9/20 9/21 9/23 9/26 9/28 9/29 10/4 6/21 7/12 8/4 11/254/22 5/11 5/15 5/19
Obs 7 3 10 8 8 8 4 8 7 7 10 8 8 8 8

Fig. 8.Characteristics of Single Day Instances.

We used as a benchmark flights previously flown on KAO, described in [5] to de-
termine the utility of our new techniques. In Figure 8 we tabulate the number of obser-
vations, he archived flight duration, and the airport. Flights from Moffett Field, CA are
denoted with an M; flights originating in Moffett and ending in Hawaii are denoted MH;
flights from Hawaii are denoted H, and flights from New Zealand are denoted N. Take-
off time is between sunset and sunrise (calculated for each day and year of flight). Wind
and temperature data from European Center for Medium Range Weather Forecasting.4

are used to calculate ground tracks and fuel consumption. The initial fuel load is also
calculated for each flight, and is based on the altitude profile 4 from [11]. This pro-
file conforms to realistic expectations that good observing will require an altitude of at
least 39000 ft. Finally, SUAs impact flights from Moffett and Hawaii; we use data from
the National Geospatial Intelligence Agency’s Digital Aeronautical Flight Information
File.

The priorities of all observations are identical, and all observations could be sched-
uled for the KAO flights. While SOFIA’s performance characteristics differ from KAO
and its elevation limits are different, we found ForwardPlanner was able to schedule
all observations for most of the tests we constructed [6]. Thus, the principal goal is to

4 www.ecmwf.int
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find an efficient flight with all of the observations scheduled. The maximum dead-leg
durationD was set to 4 hours. For the dead-leg search using Secant Method we used a
step cutoff of 150 and error tolerancet = 10−6. The step parameters used in forward
differencing were:s1 = 0.01◦ ands2 = 60 seconds. When CPU times are reported,
these experiments were run on a Sun Workstation with dual 600 MHz CPUs and 2048
Mb memory. Unless otherwise stated,MaxFlights= 20 andMaxRepeats= 10.

6.2 Choosing Takeoff Times

The results of varying the takeoff time selection while holding all other aspects of SWO
the same are shown in Figure 9. In this figure we present the Wilcoxon Ranked Sign
test output for the best percentage of the observations found by SWO. Recall that we
compare each new SWO variant to the baseline SWO described in the previous section
according to the quality of the flights. In what follows, our ”best” SWO variants are
those ”most likely to exceed the quality of the baseline SWO”.

Takeoff Range X Z Crit.

Min Rise 17 -2.218[0.01,0.025]
First Observation 18 -2.057[0.01,0.025]
Feas-Sched (Fwd)12 1.313 >0.05

Feas-Sched (Bkwd)16 1.822 [0.025,0.05]

Fig. 9. Wilcoxon Ranked Sign Test results
comparing SWO Takeoff Time variants to
SWO Baseline.

Backwards scheduling to produce
a relaxed feasible scheduleFeas-
Sched(Bkwd) did best. The least ”in-
formed” approach,Min Rise, performs
worst. Optimizing the takeoff time range
of the first observation also did not per-
form well. Both of these approaches per-
form worse than the baseline SWO, which
usesFlight-Duration .

Curiously,Feas-Sched(Fwd)did not perform as well asFeas-Sched(Bkwd). It is
possible that scheduling backwards produces a larger takeoff time range, thereby in-
creasing flexibility, but more work is needed to understand this result. Also, as we will
see later,Feas-Sched(Fwd)takes more CPU time.

6.3 Generating Initial Permutations

For this series of tests, we tested theFeas-Sched (Bkwd)variant of takeoff time se-
lection with the different initial permutation methods. The results of varying the per-
mutation selection while using the baseline critic are shown in Figure 10. Notice that
Uniform is our baseline permutation method, and thus the first line of Figure 10 is
repeated from table 9.

PermutationX Z Crit.
Uniform 16 1.822[0.025,0.05]

Rise 14 2.055[0.01,0.025]
Set 14 1.428 > 0.05

Transit 14 1.490 > 0.05

Fig. 10. Wilcoxon Ranked Sign Test re-
sults comparing SWO Initial Permutation
ordering variants to SWO Baseline.

Previous work indicates that ”in-
formed” initial permutations improve the

performance of SWO when compared to
random permutations. We find this to be
the case as well;Rise coupled with the
Feas-Sched (Bkwd)performs best when
compared to the baseline SWO. Surpris-
ingly, Uniform performs second best, but
is not as good asRise. We have no intu-
ition for why Set and Transit are worse
thanUniform .

6.4 Modifying Permutations

For this series of tests, we tested theFeas-Sched (Bkwd)takeoff time generation
method andRise initial permutation generation method with each critic method. In
each case, only one rejected observation was moved per critic application. The results
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of varying the critics are shown in Figure 11. Notice thatTimet is our baseline critic
method, and thus the first line of Figure 11 is repeated from table 10.

As expected,1-Phaseis quite good. Also as expected, we see thatTimet is not
as good asTimef . Somewhat surprisingly, though,Timet andTimef are superior to
Obs-FeasandSlot-Feas, even though the former do not correctly identify the feasible
observation-slot combinations, while the latter do not. This suggests that even crude
estimates of time are important when building the critics, and demonstrates that simply
using slot counts is not good enough.

Our final critic experiments useFeas-Sched (Bkwd)takeoff time generation,Rise
based initial permutation selection, and1-Phasecritic. In this experiment we vary the
number of rejected observations that are moved. The regret values are still used to sam-
ple, and are renormalized between samples. The number of observations is moderately
low, so we limited ourselves to experiments moving2, 3 or all rejected observations. As
we see, we don’t always benefit from increasing the number of rejected observations
that are moved; moving2or 3 rejects isn’t as much of an improvement as moving 1, but
moving all rejects is clearly better than moving 1.

Critic X Z Crit.

Timet 14 2.055[0.01,0.025]
Timef 16 2.210[0.01 0.025]

Obs-Feas14 1.710[0.025 0.05]
Slot-Feas16 1.641 >0.05
1-Phase 14 2.338[0.005 0.01]

Fig. 11. Wilcoxon Ranked Sign Test re-
sults comparing SWO Critic variants to
SWO Baseline.

RejectsN Z Crit.

1 14 2.338[0.005, 0.01]
2 13 2.148[0.01, 0.025]
3 13 2.253[0.01, 0.025]
all 15 2.541 ≈ 0.005

Fig. 12. Wilcoxon Ranked Sign Test re-
sults comparing critics moving variable
numbers of rejected observations to SWO
Baseline.

6.5 The Best Algorithms

First, we revisit Figures 4 and 5. The baseline SWO generates plans of as good or better
quality as ForwardPlanner. It runs at a fraction of the time of ForwardPlanner without
the Euler’s Method approximation speedup, and often is faster than ForwardPlanner
with Euler’s Method. The results show that, for these 6 problems, the baseline SWO is
capable of producing quality plans.

We next compare the CPU performance of the SWO algorithms. In order to make
sense of this analysis, it is important to note that SWO terminates if all observations are
scheduled. We compare algorithm performance in Figure 13 using the mean and stan-
dard deviation in CPU times for all 20 runs of the different algorithms; CPU times are
given in seconds. We also reproduce the Wilcoxon signed rank test results comparing
the quality of the flights of each SWO version to the SWO baseline. Overall, adding fea-
tures that further improve the quality of flights leads to roughly a factor of two increase
in CPU time. The takeoff time selection method imposes a significant computational
burden on SWO, as can be seen by the increase in the mean CPU time. While the critics
also impose a computational burden on SWO, we actually see areductionin CPU time
compared to those methods without the intelligent critics; this is likely due to the early
termination of SWO when all observations are scheduled.

Analyzing the CPU time on a case by case basis, we find that our worst-case perfor-
mance hit is roughly a factor of 10 increase in CPU time between the baseline SWO and
the best SWO, which is moderately high. Howerver, the vast majority of the time the
CPU time hit is under a factor of 2. The resulting SWO algorithms deliver significantly
better quality flights than ForwardPlanner with Euler’s Approximation, at roughly com-
parable run times.
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Name Baseline T/O Perm. Critic Swaps
Takeoff RangeFlightDur Feas-Sched (Fwd) ⇒ ⇒ ⇒
Permutation Uniform ⇒ Rise ⇒ ⇒

Critic Riset ⇒ ⇒ 1-Phase ⇒
Swaps 1 1 1 1 all
Mean 63.728 113.071 187.612 166.486 145.501
Sdev 29.976 77.623 144.755 108.985 86.427

X - 16 14 14 15
Z - 1.823 2.055 2.338 2.541

Crit - [0.025,0.05] [0.01,0.025][0.005,0.01]≈ 0.005

Fig. 13.Comparison of mean and variance of SWO CPU times for all ”incremental best” SWO
variants identifying best SWO features.

7 Conclusions and Future Work

We described the SFPP, a difficult mixed discrete and continuous constrained optimiza-
tion problem. We describe ForwardPlanner, an initially promising approach mixing
techniques from AI and OR, which ultimately fails to scale for the SFPP. We have de-
scribed the application of SWO to the SFPP problem. As with our previous approach,
ForwardPlanner, the resulting algorithm combines AI and OR techniques to solve a dif-
ficult constrained optimization scheduling problem. Our results indicate that SWO is a
powerful technique that delivers higher quality flight plans in less time than Forward-
Planner, our previous approach to the SFPP. The quality of flights found by SWO can
be increased even further, at a reasonably increase in CPU time.

The SFPP differs from many traditional OR problems in that the temporal and re-
source constraints are implicit functions of the constraints on elevation and the con-
straints of motion of the aircraft. The combination of relaxations and continuous opti-
mization method used in ForwardPlanner to reduce the infinite space of setup actions
lead to an efficient constructor for our SWO algorithm. We also show that relaxations
of the SFPP lead to traditional OR problems, and employ heuristic solutions to these
problems in our SWO approach to good effect. In particular, the takeoff time selec-
tion method based on greedy solutions to1|ri; di|

∑
wiUI proved to be an important

component of the best quality SWO algorithm. Finally, we verify two conclusions from
previous work in SWO. First, informed permutation construction techniques improve
SWO performance over random permutation generation. Second, swapping many re-
jected observations per critic application pays off well in terms of both the quality of
solutions and speed of SWO. These lessons may serve others working on complex con-
strained optimization problems with mixes of discrete and continuous variables.

There is considerably work left to do on the SFPP. Our experiments assumed all
observations were of equal value; it is easy to generalize our SWO to handle variable
priority, but empirical studies are needed to ensure SWO finds high quality flights. Our
benchmark included problems for which it was always possible to schedule all obser-
vations. SWO can be modified for problems where this is impossible. Ongoing work
shows SWO works well even when this is not the case; again, further tests are required
to ensure good performance. In particular, CPU times will likely increase when early
termination is no longer likely. Additionally, for each observation, minimizing aver-
age line-of-sight water vapor is an important objective. Initial results with SWO show
promise, but more work is needed. Finally, the SFPP also requires that we build series
of flights rather than just a single flight. Preliminary flight series testing indicates that
SWO is a promising technique for building flight series, but the basic algorithm requires
some modifications to ensure good performance.
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